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Abstract
Transfer printing based on switchable adhesive that heterogeneously integrates materials is
essential to develop novel electronic systems, such as flexible electronics and micro LED
displays. Here, we report a robust design of a thermal actuated switchable dry adhesive, which
features a stiff sphere embedded in a thermally responsive shape memory polymer (SMP)
substrate and encapsulated by an elastomeric membrane. This construct bypasses the
unfavorable micro- and nano-fabrication processes and yields an adhesion switchability of over
1000 by combining the peel-rate dependent effect of the elastomeric membrane and the thermal
actuation of the sub-surface embedded stiff sphere. Experimental and numerical studies reveal
the underlying thermal actuated mechanism and provide insights into the design and operation
of the switchable adhesive. Demonstrations of this concept in stamps for transfer printing of
fragile objects, such as silicon wafers, silicon chips, and inorganic micro-LED chips, onto
challenging non-adhesive surfaces illustrate its potential in heterogeneous material integration
applications, such as flexible electronics manufacturing and deterministic assembly.

Supplementary material for this article is available online

Keywords: switchable adhesive, reversible adhesive, transfer printing, flexible electronics

1. Introduction

Transfer printing is an emerging material assembly technique,
which utilizes an elastomeric stamp with switchable adhe-
sion to transfer inks (i.e. objects to be transferred) from their
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donor substrate onto a receiving substrate. It is essential to
develop existing and envisioned systems such as stretchable
electronics [1–13] and flexible electronics [14–24]. The trans-
fer yield of transfer printing critically depends on the ability of
a switchable adhesive to change from a strong state for pick-
up to a weak state for printing. The chemical adhesive that
exploits surface chemistry to regulate the interfacial adhesion
via external stimuli, such as water, heat, or UV light is reli-
able for transfer printing [25–29], but the lack of reversibil-
ity greatly limits its broad utility. To ensure efficient transfer
printing, a switchable dry adhesive with high reversibility is
desired. Various strategies based on structure designs or smart
materials have been proposed and provide promising solutions
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Figure 1. Schematic illustration of the transfer printing process enabled by a thermal actuated switchable dry adhesive (or called stamp). (a)
The stamp is moved above the donor. (b) The stamp is in contact with the ink. (c) The ink is quickly picked up by the stamp. (d) The inked
stamp is moved above the receiver followed by heating, which recovers the permanent shape of SMP substrate to bulge the elastomeric
membrane. (e) The ink is printed onto the receiver after the stamp is removed slowly. (f) The heated stamp is pressed onto a flat substrate
and then cooled down to fix the flat state at room temperature for the next transfer printing cycle.

tomeet the above requirement. Typical examples of switchable
adhesive based on structure designs are the gecko-inspired
dry adhesive with fibrillar surface assisted by retraction angle
or lateral movement [30–32], the aphid-inspired dry adhesive
with surface topography modulated by external stimuli (e.g.
heating, magnetic field, or pneumatic pressure) [33–37], and
the octopus-inspired dry adhesive with cavity pressure con-
trolled by external stimuli [38, 39]. These bio-inspired switch-
able dry adhesives are very valuable despite the required del-
icate designs and relatively complex fabrication process of
surface micro-structures (e.g. photolithography, wet etching).
Smart materials especially shape memory polymers (SMPs)
have been widely used to develop switchable adhesives due to
their unique properties of memorizing temporary shapes and
fully recovering to their original shapes upon external stim-
uli (e.g. heat, light) [40–44]. For example, Xie et al adopted
a simple bilayer structure consisting of a thin adhesive layer
and an SMP layer to achieve a self-peeling switchable and
reversible dry adhesive [45]. Linghu et al utilized a simple,
heat-responsive SMP block to manipulate multiscaled, arbit-
rarily shaped objects [46]. To further enhance the perform-
ance of SMP-enabled dry adhesives, surface micro-structures
(e.g. micro-posts, micro-pyramids) were introduced to com-
bine the superior properties of structure designs and the multi-
functionality to external stimuli of smart materials [47–54].

Here, we report an alternative design of a thermal actuated
switchable dry adhesive with high reversibility, in which loc-
alized regions of an elastomer/SMP composite stamp are con-
trolled in a fashion similar to that of a balloon. The switchable
adhesive features a stiff sphere embedded in a thermal respons-
ive SMP substrate and encapsulated by an elastomeric mem-
brane. This construct bypasses unfavorable micro- and nano-
fabrication processes via molding and pressing processes and
yields an attractive level of switchable adhesion through a
combination of the peel-rate dependent effects of an elasto-
meric membrane and the thermal actuation of a sub-surface
embedded stiff sphere. Experimental and numerical studies

reveal the underlying thermal actuatedmechanism and provide
insights into the design and operation of the switchable
adhesive. Demonstrations of this concept in the form of stamps
capable of transfer printing fragile objects, such as silicon
wafers, silicon chips, and inorganic micro-LED chips onto
challenging non-adhesive surfaces in deterministic ways illus-
trate the robust capabilities of thermal actuated switchable
adhesives and their immense potential in heterogeneousmater-
ial integration applications.

2. Results and discussion

Figure 1 schematically shows the transfer printing process
enabled by the thermal actuated switchable adhesive, or stamp.
Here, the stamp has a stiff sphere embedded in a thermal
responsive SMP substrate and encapsulated by an elastomeric
membrane, as illustrated in figure 1(a). The embedding of the
stiff sphere was achieved by pressing it into the heated SMP,
which was cooled to fix the temporary shape so the membrane
remained flat to maximize the areal interfacial contact and
the corresponding adhesive force. This flat state is referred as
the ‘adhesion on state.’ The transfer printing began by moving
the stamp above a donor substrate (figure 1(a)). The stamp was
then brought into contact with the ink (figure 1(b)). The stamp
was quickly retracted, picking up the ink from the donor sub-
strate (figure 1(c)). The inked stampwas then brought into con-
tact with the receiving substrate. The stamp was heated, caus-
ing the SMP to return to its original shape, which pushed the
stiff sphere out, creating a bulge in the membrane and reducing
the adhesive force (figure 1(d)). This bulge state is referred as
the ‘adhesion off state.’ The slow retraction of the stamp left
the ink on the receiving substrate (figure 1(e)). The stamp was
heated, pressed to a flat state, and cooled to maintain the adhe-
sion on state for the next transfer printing cycle (figure 1(f)).

The thermal actuated switchable adhesive features three
critical components: (a) a thermal responsive SMP that serves
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Figure 2. The thermal actuated switchable adhesive and its adhesion characteristics. (a) Photography of the thermal actuated stamp with
reversible adhesion states. (b) Storage modulus and loss factor of SMP as functions of temperature. (c) Typical force-displacement curve of
pull test. Measured adhesion strengths of the stamp/glass interface as functions of preload (d) and retraction speed (e), respectively. Insets:
adhesion switchability. (f) Reversibility and repeatability tests of adhesion measurements.

as the substrate to embed stiff spheres; (b) stiff spheres embed-
ded in the SMP substrate that enable switchable adhesion; and
(c) a thin elastomeric membrane that encapsulates the stiff
spheres and SMP substrate and serves as the interface between
the stamp and ink. Figure 2(a) shows an image of a represent-
ative thermal actuated stamp consisting of a thermal respons-
ive epoxy SMP substrate (30 mm × 30 mm × 8.5 mm), a
steel ball (5 mm in diameter), and a polydimethylsiloxane
(PDMS, DowCorning Sylgard 184with 10:1monomer: cross-
linking agent) membrane (30 mm × 30 mm × 1.3 mm). The
stamp provides thermal actuated switchable adhesion by con-
trolling the bulge configuration of the steel ball. The non-
bulging configuration corresponds to the adhesion on state,
while the bulging configuration corresponds to the adhesion
off state. Figure 2(b) shows the storagemodulus and loss factor
of epoxy SMP as functions of temperature. The glass trans-
ition temperature of SMP is around 45 ◦C. To characterize the
performance of thermal actuated switchable adhesive, vertical
pull tests were carried out under various preloads and retrac-
tion speeds for a stamp/glass interface. Themeasurement setup
(figures S1(a) and (b) (available online at stacks.iop.org/IJEM/
3/035103/mmedia)) consists of a material testing system, a
manual tilt stage, and a thermal stage. The pull test proced-
ure is schematically shown in figure S1(c). The glass slide
approached the stamp at a speed of 100 µm s−1. After apply-
ing a preload for 20 s, we pulled the glass slide at a specific
speed until it separated from the stamp. The pull-off force is

given by the maximum pull force from the force-displacement
curve (figure 2(c)). The adhesion strength can then be obtained
by distributing the pull-off force over the interfacial contact
area.

Figure 2(d) shows the measured adhesion strengths of the
stamp/glass interface under two adhesion states as functions
of preload at a fixed retraction speed of 100 µm s−1. The
adhesion strength under the adhesion on state had a posit-
ive correlation with the preload before reaching a plateau. In
other words, the adhesion strength increased with the pre-
load until the preload exceeded a critical load (around 10 N
in this case). The adhesion strength under the adhesion off
state was much lower than that under the adhesion on state,
and it depended on the preload (see figure S2(a)). The adhe-
sion switchability (i.e. the maximum adhesion strength over
the minimum adhesion strength) increased with the preload
and reached above 300 in experiments under a fixed retrac-
tion speed of 100 µm s−1 (see inset in figure 2(d)). The influ-
ence of retraction speed on adhesion strength is shown in
figure 2(e) with a fixed preload of 1 N. As expected, the adhe-
sion strength is rate-dependent due to the viscosity effect of
the PDMS membrane [55]. The adhesion strength had a posit-
ive correlation with the retraction speed regardless of whether
the stamp is in adhesion on or off states (figure S2(b)). The
maximum adhesion switchability under a fixed preload of
1 N reached 1000 (see inset in figure 2(e)), which is super-
ior to most existing stamp designs [48]. Increased preload can
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Figure 3. The FPC-enabled thermal actuated stamp and its application in transfer printing. (a) The magnified view of the FPC-enabled
thermal actuated stamp illustrating various components. (b) Photography of the thermal actuated dry adhesive stamp (diameter: 40 mm),
which includes SMP substrate (thickness: 20 mm), FPC heater (thickness of Cu layer: 35 µm, thickness of polyimide layer: 200 µm), steel
ball (diameter: 5 mm) and PDMS membrane (thickness: 1.3 mm). (c) The surface temperature of the bare FPC heater on the SMP substrate
as a function of time under various input currents of 1 A, 2 A, and 3 A. (d) Photography of side views of the FPC-enabled thermal actuated
stamp under two adhesion states. (e) FEA simulation visualizing the principal strain of the PDMS membrane under the adhesion off state.
(f) Snapshots of the transfer printing of a silicon wafer in a non-contact mode. Inset: infrared thermography of the stamp after transfer
printing process.

further enhance the adhesion switchability. However, a lar-
ger preload is not preferred for fragile inks, such as ultra-
thin silicon wafers. Figure 2(f) shows the reversibility and
repeatability of the thermal actuated adhesive under a preload
of 10 N and a retraction speed of 100 µm s−1. Due to the
SMP’s high shape fixation ratio (greater than 99.8%), no vis-
ible blistering of the PDMS layer was observed in experiments
after the planishing step. The high and low adhesion strengths
had negligible changes during the cycle test, which indic-
ates that the thermal actuated adhesive has desirable adhesion
performance.

To enhance the operation of the thermal actuated stamp, a
flexible printed circuit (FPC) was incorporated into the stamp

and served as the heating source for actuation. Figure 3(a)
shows a tilted, magnified view of the FPC-enabled thermal
actuated stamp. The FPC heater was integrated inside the
SMP substrate and under the embedded steel ball. Figure 3(b)
shows a photograph of the FPC enabled thermal actuated
stamp (40 mm in diameter). The thicknesses of the SMP
and PDMS were 20 mm and 1.3 mm, respectively. The FPC
heater (figure S3(a)) was 35 mm in diameter and 1 mm in
line width with the hollow part designed to reduce unfavor-
able compression from the steel ball (5 mm in diameter). The
vertical distance from the FPC heater to the top surface of
the SMP substrate was 8 mm. To prove that the FPC heater
could provide enough heating to the system, we put a bare

4
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heater on an SMP substrate and monitored the surface tem-
perature using an infrared camera (C400M, Guide Sensmart
Tech Co., Ltd) when the heater was on, as shown in figures
S3(b) and S3(c). Figure 3(c) shows the surface temperature
as a function of time under various input currents. As expec-
ted, the temperature increased as the input current increased,
and the temperature reached a stable state within 5 s. An input
current of 2.0 A or larger may be enough to induce phase
change of SMP and switch the adhesion state. The input cur-
rent was set at 3.0 A in these experiments, considering that
the higher the temperature, the faster the adhesion switching
speed.

Figure 3(d) shows the side views of the FPC-enabled
thermal actuated stamp under two adhesion states. Obvi-
ous flat and bulging configurations were observed for the
adhesion on and off states, respectively. An axisymmet-
ric finite element model was also established to assess the
deformations of the PDMS membrane and SMP substrate
under the adhesion off state. The bugle height was set
at 3 mm, which was measured in experiments. The max-
imum principal strains in the PDMS membrane and SMP
substrate reached 24.75% (figure 3(e)) and 16.81% (figure
S4), which are much smaller than their fracture strains of
over 100% [40, 56]. To demonstrate the capabilities of the
FPC-enabled thermal actuated stamp, the transfer printing
of a 4-inch silicon wafer in a non-contact mode is demon-
strated in figure 3(f). The wafer was placed on a piece
of clean glass and then picked up by the stamp at room
temperature with the heater off. After heating for around
35 s, the steel ball bugled and pushed the wafer out onto
the glass. The red dotted frame shows the temperature dis-
tribution of the stamp after the completed transfer print-
ing process. The maximum temperature was 77 ◦C, which
indicates that no thermal damage was induced in the sys-
tem. It should be noted that the FPC-enabled thermal actu-
ated stamp is also applicable for transfer printing in a con-
tact mode (i.e. the stamp should come in contact with the
receiving substrate during printing) since contact transfer
printing places less stringent requirements on switchable
adhesives.

Another attractive feature of the thermal actuated stamp is
that the steel balls can be individually actuated, thus providing
the potential for programmable transfer printing. Figure 4(a)
shows a schematic of the programmable transfer printing
platform based on a stamp with multiple thermal responsive
regions with the aid of laser heating. The platform consists of
a laser-generation system, a displacement control system, and
a microscope monitoring system. As shown in figure 4(b), we
fabricated the stamp using much smaller steel balls with dia-
meters of 1 mm (arranged in a 5 × 5 array with a spacing of
7 mm) to be compatible with the laser spot size (300 µm in
diameter). The PDMS membrane thickness was 0.5 mm. The
laser beam had a wavelength of 808 nm, a duration time of 1 s,
and an input power of 1 W. Figure 4(c) shows the microscopy
of the laser-heated steel ball. The laser spot size was compar-
able to diameter of the steel ball such that the laser heating rap-
idly dissipated within the steel ball to ensure a quick thermal
response within the system. To further enhance the printing

speed, the size of the steel ball should be decreased to match
the laser spot size.

The unusual capabilities of the thermal actuated stamp
are demonstrated by programmable transfer printing of sil-
icon chips (2 mm × 2 mm × 530 µm) and LED chips
(2 mm × 2 mm × 150 µm) onto challenging non-adhesive
surfaces, such as a microstructured PDMS substrate, which
are not easily accessible via other adhesive schemes. As a
demonstration, a 3 × 3 array of single polished silicon chips
were placed on the glass surface (figure 4(d)(i)). The silicon
chips were then picked up by the thermal actuated stamp
(figure 4(d)(ii)) and selectively heated by the laser beam
(figure 4(d)(iii)). The heated steel balls are marked by red
arrows, which clearly indicates that these heated steel balls
bulge out from the SMP substrate. These selected silicon chips
were transfer printed onto the microstructured PDMS sub-
strate with micro-pyramids (10 µm × 10 µm × 6.6 µm)
(figure 4(d)(iv)). The unheated silicon chips remained on the
stamp. Figure 4(e) shows the programmable transfer print-
ing of LED chips onto the microstructured PDMS substrate.
The optical and scanning electron microscope images of the
LED chip on the microstructured PDMS substrate are shown
in figure S5. The LED chip was lit by a multimeter after
transfer printing, as shown in figure 4(f). Figure 4(g) shows
the voltage-current curves of the LED chip before and after
transfer printing, which indicates that its performance is not
influenced by the transfer printing process. The microstruc-
tured PDMS substrate with micro-pyramids represents a chal-
lenging receiver with weak adhesion. These demonstrations
illustrate the great potential of the thermal actuated stamp
for deterministic assembly as well as heterogeneous material
integration applications.

It should be noted that the thermal actuated switchable dry
adhesive is limited by its cycle time due to the heating and
cooling, which limits the transfer printing. However, this limit
depends on various parameters such as the ink size and heating
method. For transfer printing of objects with large size, such as
a 4-inch silicon wafer, via FPC global heating, the cycle time
is about 1 min. The cycle time is about 10 s for transfer print-
ing small objects, such as a 2 mm LED chip, via local laser
heating. Future work should pay focus on reducing the limit
of cycle time by adopting rapid heating and cooling strategies.
Moreover, transfer printing through laser heating induces a
thermal effect on neighboring objects, which may yield a min-
imum distance between objects without thermal effects. This
minimum distance depends on several factors, such as the size
of the ball, the diameter of laser spot, and the laser heating
duration time, which require further exploration.

3. Fabrication and testing

3.1. Fabrication of the thermal actuated stamp for pull tests
(see figure S6)

A thin-walled aluminum pan is used as the mold for curing
epoxy SMP, which is composed of an epoxy monomer E44
(China Feicheng Deyuan Chemical Corp.) and a curing agent
Jeffamine D230 (Sigma-Aldrich). The liquid mixture (weight

5
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ratio of 81:46) was cured in an oven at 100 ◦C and 130 ◦C
for 1 h, respectively. Then a steel ball (diameter: 5 mm) was
completely pressed into the heated SMP (thickness: 8.5 mm)
until the SMP cooled down. Afterward, a room temperature
curing silicone (type-705) was spin-coated on the surface of
the SMP at a speed of 2000 rpm, which bonded the SMP sub-
strate and PDMSmembrane (Sylgard 184, DowCorning). The
thickness of the thin silicone layer was 45 µm. To prepare the
PDMSmembrane (thickness: 1.3 mm), a spot of liquid PDMS
mixture (10:1 base to crossing-linking agent ratio) was poured
into a small thin-walled aluminum pan, degassed in a vacuum
chamber for 15 min, and then cured in an oven at 75 ◦C for
4 h. Both the silicone-coated SMP and PDMSmembrane were
exposed in a plasma cleaner for 45 s before forming strong
chemical bonds. Finally, the thermal actuated stamp was cut
into a block with an in-plane size of 30 mm × 30 mm.

3.2. Pull tests

A clean glass slide (50 mm× 50 mm× 1.3 mm) was attached
to a two-axes manual tilt stage with the purpose of forming
a leveling contact with the SMP stamp. Then the tilt stage
and the force sensor of the materials testing system (Model
5944, Instron) were fitted together. The resolution of the force
sensor was 2 mN. The thermal actuated stamp was attached
to the thermal stage. During the pull test, the glass slide
first approached and contacted the stamp at a fixed speed of
100 µm s−1 under a given preload and then retracted at a given
speed after relaxing for 20 s. To test the pull-off force in the
adhesion off state, the heating plate was turned on with a set-
ting temperature of 120 ◦C to bulge the steel ball out of the
SMP substrate.

3.3. Fabrication of the FPC-enabled thermal actuated stamp
(see figure S7)

An aluminum mold was fabricated using a numerical-
controlled machine tool. Then the liquid PDMS mixture (10:1
base to crossing-linking agent ratio) was poured into the alu-
minum mold and degassed in a vacuum chamber for 30 min.
Next, the PDMS was cured in an oven at 75 ◦C for 4 h. The
liquid SMP mixture was poured into the PDMS mold, filling
about 1/3 of the cavity volume. The mold was cured again at
100 ◦C for 1 h. Then, a piece of the FPC heater was care-
fully attached to the heated SMP. The rest of cavity volume
was filled with liquid SMPmixture followed by 1 h curing and
post-curing at 100 ◦C and 130 ◦C, respectively. After this, the
room temperature curing silicone (type-705) was spin-coated
on the surface of the SMP at a speed of 2000 rpm. The thick-
ness of the thin silicone layer was 45 µm. The remaining pro-
cedures are same as those described in section 3.1.

3.4. Mechanical modeling and FEA

Two axisymmetric finite element models were established to
study the deformations of the PDMSmembrane and SMP sub-
strate (adhesion off state) in ABAQUS, respectively. The dia-
meter of the steel ball was 5 mm. The diameter and thickness

of the PDMSwere 15 mm and 1.3 mm and 40 mm and 8.5 mm
for the SMP substrate. Considering that the steel ball is much
stiffer than the PDMS and heated SMP, the steel ball was set as
rigid body in finite element analysis (FEA). The Young’s mod-
ulus and Poisson’s ratio were 1 MPa and 0.48 for PDMS, and
0.9 MPa and 0.38 for the heated SMP. In the PDMS model, a
longitudinal displacement of 3 mm was applied to the steel
ball while keeping the edge of the PDMS membrane fixed
(figure 3(e)). In the SMP model, a longitudinal displacement
of 2 mmwas applied to the steel ball while keeping the bottom
of the SMP fixed (figure S4).

3.5. Transfer printing of silicon wafer

A home-made acrylic clamp was assembled with the mater-
ials testing system (Model 5944, Instron). Then the FPC-
enabled thermal actuated stamp was fixed to a glass slide
(50 mm × 50 mm × 1.3 mm) by double-side tape. Next, the
glass slide was inserted into the home-made acrylic clamp,
which was connected to a direct-current (DC) power source
(power off). After completing the setup, the stamp approached
and contacted a 4-inch silicon wafer (thickness: 450 µm) at
a fixed speed of 100 µm s−1. A 10 N preload was applied to
ensure intimate contact between the stamp and the wafer. After
a relaxation period of 10 s, the clamp retracted at a fixed speed
of 100 µm s−1 to pick up the wafer from the glass substrate.
The power was turned on with a current of 3 A. The steel ball
gradually bulged out in 35 s and pushed the wafer onto the
glass substrate.

3.6. Fabrication of a laser actuated stamp

A thin-walled aluminum pan was used as the mold for cur-
ing the epoxy SMP in an oven at 100 ◦C and 130 ◦C for 1
h. Then a 5 × 5 array of steel balls (diameter: 1 mm, spa-
cing: 7 mm) were completely pressed into the heated SMP
(thickness: 5 mm) using a piece of iron plate until the SMP
cooled down. Next, the room temperature curing silicone was
spin-coated on the surface of the SMP at a speed of 2000
rpm. A spot of liquid PDMS (10:1 base to crossing-linking
agent ratio) mixture was dropped on a clean circular glass sub-
strate followed by spin-coating at speed of 500 rpm. Then the
glass substrate was placed in an oven at 75 ◦C for 4 h. The
PDMSmembrane (thickness: 0.5 mm)was cut into an in-plane
size of 40 mm × 40 mm. Both of the silicone-coated SMP
and PDMS membrane were exposed in a plasma cleaner for
45 s before forming strong chemical bonds. Finally, the laser
actuated stamp was cut into a block with an in-plane size of
40 mm × 40 mm.

3.7. Programmable transfer printing of silicon chips and LED
chips

At first, the laser actuated stamp manually picked up the array
of silicon chips or LED chips (NSS-D7676A1, San’an Opto-
electronics CO., Ltd) from the glass substrate. By using a laser-
generation system (FC-W-808 nm-10 W, Changchun New
Industries Optoelectronics Tech. Co., Ltd) [28, 33, 46], the
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chips were printed onto the microstructured PDMS substrate
in a defined pattern with a power of 1 W. The laser beam used
here had a wavelength of 808 nm and a duration time of 1 s.
The beam profile was round and the focal length of the lens
was 40 mm.

4. Conclusion

In this paper, we report a thermal actuated switchable
dry adhesive, which features a stiff sphere embedded in a
thermally responsive SMP substrate and encapsulated by an
elastomeric membrane. The adhesive combines the peel-rate
dependent effects of an elastomeric membrane and the thermal
actuation of a sub-surface embedded stiff sphere to offer an
adhesion switchability of over 1000, which far surpasses most
existing dry adhesive schemes. Moreover, the adhesion on
state works at room temperature, which prevents the high
thermal stress induced in other SMP-based dry adhesives.
Demonstration of this concept in an FPC-enabled thermal
actuated stamp for transfer printing a fragile silicon wafer in
a non-contact mode illustrates its robust capability for hetero-
geneous material integration. With the aid of laser heating, the
proposed adhesive enables programmable transfer printing of
fragile silicon chips and LED chips onto challenging receiv-
ers, such as microstructured PDMS substrates with micro-
pyramids, which is not easily performed via other transfer
printing schemes. Thus, the proposed thermal actuated switch-
able dry adhesive shows enormous potential in flexible elec-
tronics manufacturing.
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